Multiscale modeling of polymer-induced interactions between colloids in waterborne coatings
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Introduction Self-consistent field theory Phase stability from polymer defects

The primary components of waterborne coatings are Spherical lattice self-consistent field theory for an isolated colloid
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Rheology-modifying polymers consist of a hydrophobic
backbone and hydrophilic end caps that adsorb to the
colloids' surfaces.
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allowing us to calculate the density of segments for each layer m:
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In waterborne systems, HEUR polymers form a layer of
loops around each colloid, increasing the range of the
colloids' repulsive interactions.

A(m)= # of sites per lattice shell

Lattice self-consistent field theory for two interacting colloids with bridging

percent of polymers defective
To calculate the free energy of two interacting polymer-coated colloids, we solve the SCFT equations for two
flat surfaces on a cubic lattice. We apply the Derjaguin approximation to the flat surface calcuations to
estimate the effective interactions between two spherical colloids:

We quantify these repulsive interactions
through Brownian dynamics simulations ¢
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and self-consistent field theory to inform
our multiscale modeling efforts to
understand and predict the behavior of
waterborne coatings.

Simulation model system

We use a stiff bead-spring model to resolve each kuhn
step of the polymer and bead-bead repulsions account
for the excluded volume effects of polymer interactions

All simulations are performed using the molecular
dynamics package in HOOMD-blue®.

Kuhn step

Harmonic spring potential:
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Bead-bead repulsive potential:

F(AH,7)kT

We compare the SCFT predictions to BD
simulations of the same set-up. In the BD
simulations,
translational freedom on the surface of
the colloid,
approach, the loops are fixed without

translational movement. Therefore, we

introduce SCFT with non-uniform polymer . 20

Derjaguin approximation

flat surfaces colloids

high polymer surface coverage

the polymer

~

=
loops have 2 = Theory a(y)

S

=

—+— BD simulation

whereas in the SCFT

—e— Theory 09=0.051/;2

6 8 10 12

moderate polymer surface coverage

14

We see that phase separation
occurs if all polymers have
two hydrophobes (one on
each end). However, if more
than 10% of the polymers are
missing a hydrophobic end-
cap, the formulation remains
dispersed.

volume fraction

Conclusions and future work

We present two approaches, SCFT and Brownian dynamics, to quantifying
the effective interactions between colloidal particles coated in rheology
modifying polymers. We show that our Brownian dynamics simulations
validate the lattice self-consistent field theory approached, which is
ultimately used to calculate equilibrium effective potentials inaccesible by
simulations. The resulting effective potentials demonstrate the
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Langevin integrator:
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